

Roger J. Pomerantz, M.D. President, Chief Executive Officer and Chairman

March 8, 2017

Forward looking statements

Some of the statements in this presentation constitute "forward looking statements" under the Private Securities Litigation Reform Act of 1995. Such statements are subject to factors, risks and uncertainties (such as those detailed in the Company's periodic filings with the SEC) that may cause actual results to differ materially from those expressed or implied by such forward looking statements. Any forward looking statements included herein represent our views as of today only. We may update these statements, but we disclaim any obligation to do so.

Investor highlights

Opportunity

Expansive therapeutic opportunity utilizing the microbiome, a highly promising new area of medicine

Platform

Seres is a leader in microbiome drug development with differentiated capabilities

Pipeline

Broad pipeline in infectious, inflammatory and immune, metabolic and liver diseases

Team

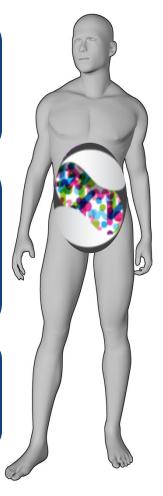
Experienced, accomplished leadership team

Runway

Strong cash and strategic position

The microbiome is essential to human health

Infectious Disease


- A diverse microbiome resists colonization by exogenous pathogens
- Exposure to spectrum antibiotics, and resulting gut microbiome dysbiosis, increase risk for *C. difficile* infection and colonization / infection by multi-drug resistant organisms

Inflammation and Immunology

- Microbiome known to alter regulatory T cells and Th17 T cell activation
- Role in inflammatory bowel disease (Ulcerative colitis and Crohn's disease) as well as allergy, rheumatoid arthritis and multiple sclerosis
- The microbiome composition has been demonstrated to impact the efficacy and safety of immuno-oncology checkpoint inhibitors

Metabolic Disease

- Effects on liver function, glucose utilization, and caloric availability
- Microbiome, and bacterial bile acid metabolism, implicated in several metabolic diseases (e.g. diabetes, obesity, liver diseases)

Business strategy

Focused clinical efforts

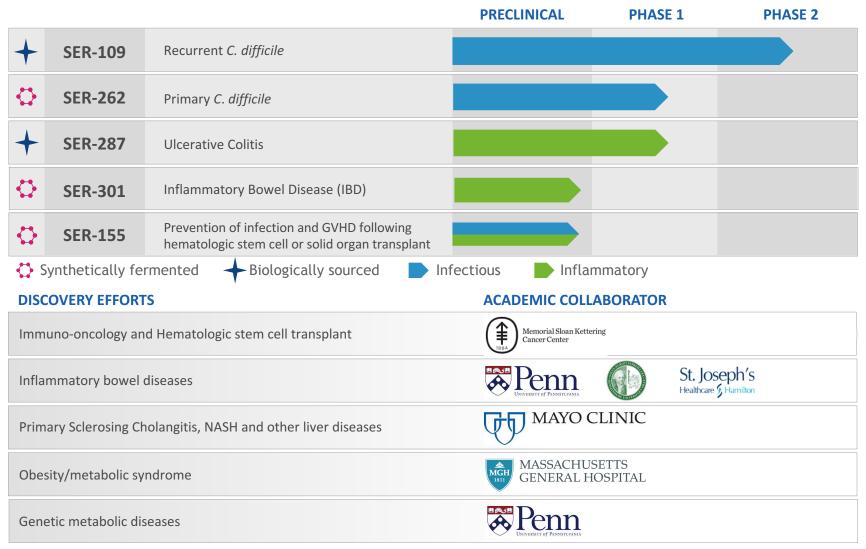
 Prioritize serious diseases where dysbiosis of the gut microbiome has a causal role

C. difficile infection

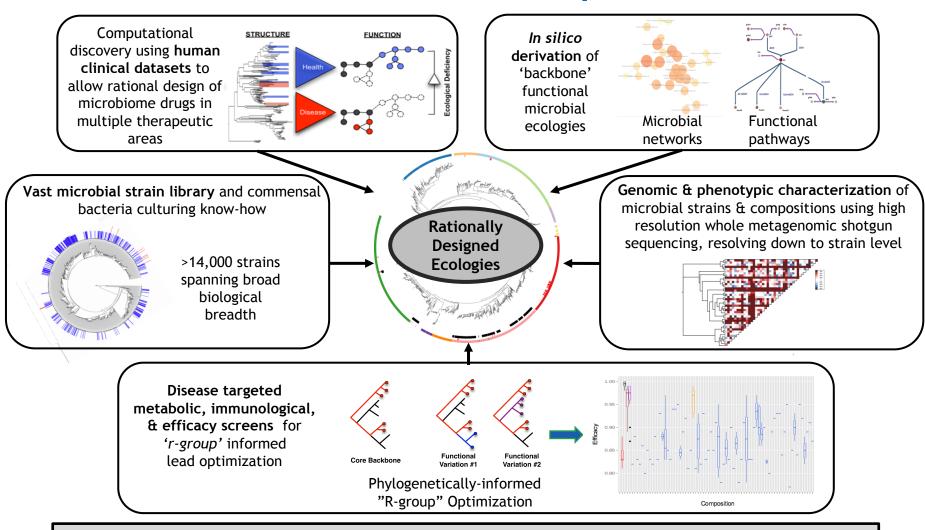
Inflammatory bowel disease

World class, differentiated, microbiome expertise

- Computational biology
- Basic microbiome research
- Microbiology
- Translational science
- Clinical development
- Advanced manufacturing

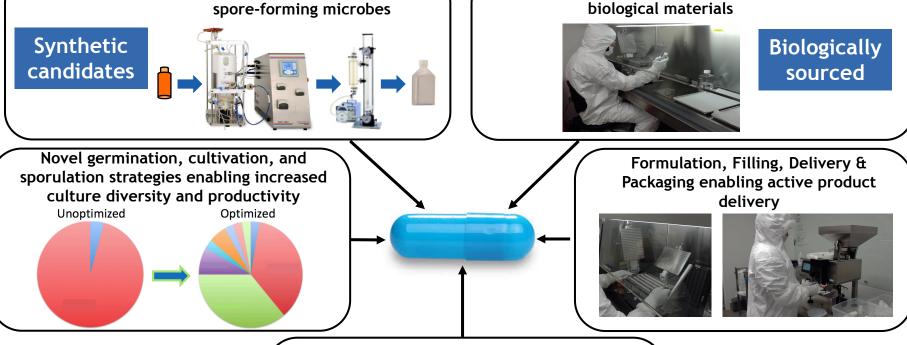

Research in new therapeutic areas

 Collaborate with leading academic centers to advance research in promising therapeutic areas



Robust microbiome therapeutics pipeline

Differentiated microbiome R&D platform



Only company with clinical stage microbiome development programs, human microbiome datasets, and clinical datasets before and after treatment

CMC platform enables manufacture of cGMP-compliant, oral, microbiome therapeutic candidates

cGMP Isolation of spores from complex

Fermentation of anaerobic and

Clostridium difficile Infection

Overview and R&D Programs

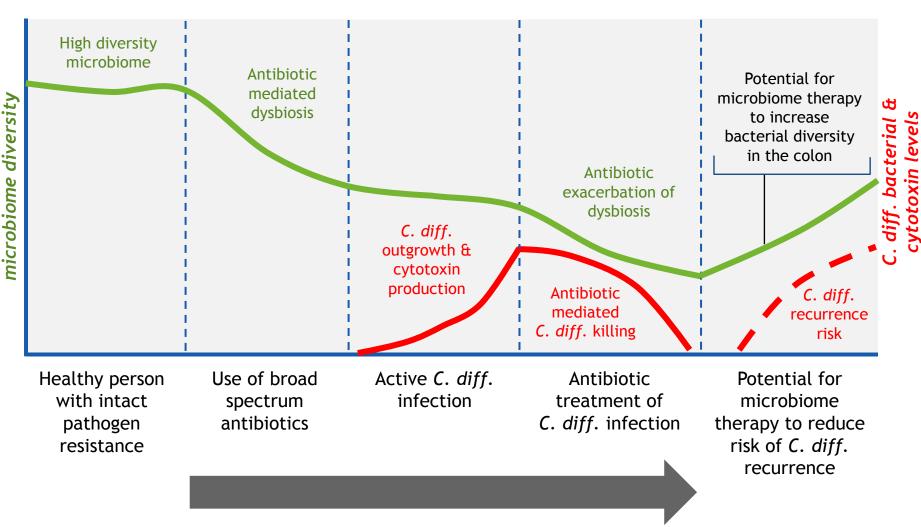
C. difficile infection overview

- Infectious disease caused by toxin producing anaerobic, spore-forming bacteria, resulting in diarrhea, abdominal pain, fever, and nausea
- <u>Leading cause of hospital-acquired</u>
 <u>infection in the US</u>; approximately 29,000
 deaths/year
- Infection caused by two-hit process:
 Disruption of gut microbiome and exposure to pathogenic spores
- ~25% of patients with primary CDI recur
- Risk of relapse increases with each recurrence

Treatment landscape & disease burden

Modality		Characteristics	
Antibiotics		 Perpetuates microbiome dysbiosis, creating <i>C. difficile</i> infection susceptibility High recurrence rates, especially in recurrent cases 	
Fecal Transplant		 Invasive procedures (colonoscopy or NG-tube) Potential for transmission of human pathogens No FDA approved products 	
Antibodies		 Limited efficacy in Phase 3 studies Does not address underlying microbiome dysbiosis Complex administration, not patient-friendly 	
Vaccines		 Unproven efficacy until Phase 3 is complete Complex to identify and vaccinate elderly at-risk groups 	

High Unmet Medical Need


• Economic burden as high as \$4.8B in U.S. acute-care facilities¹

• Recurrent CDI episode ~\$18K²; >\$50K for cycle of recurrences

High Treatment Costs

Dysbiosis and potential for therapeutic intervention Hypothetical patient course

Gastrointestinal

SER-109 Phase 1b and Phase 2 (8-week) study results

	Phase 1b Open Label, Single-Arm (n=30; 4 sites)	Phase 2 - Interim results Randomized, Placebo-Controlled (n=89; randomized 2:1; 28 sites)
Primary Endpoint	CDI recurrence up to 8 weeks defined by: >3 unformed stools over 1 day	CDI recurrence up to 8 weeks defined by: ≥3 unformed stools/day for ≥2 days
Efficacy	 13% recurrence per protocol 3 of 4 patients with recurrent transient diarrhea, did not require antibiotic treatment and tested negative for <i>C. diff</i>. at 8 weeks 	 SER-109: 44% (26 of 59) recurrence Placebo: 53% (16 of 30) recurrence Relative risk recurrence between arms not significant
Safety	 Most AEs were mild to moderate and transient Most frequent AEs were gastrointestinal symptoms similar in nature to that seen in FMT trials or following CDI 	 SER-109 is well-tolerated with an acceptable safety profile, it was associated with a small increase in gastrointestinal adverse effects, particularly diarrhea, compared to placebo (25% vs 14%)

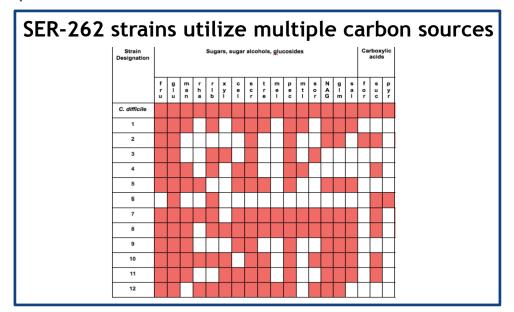
SER-109 Phase 2 study post read-out analyses and findings

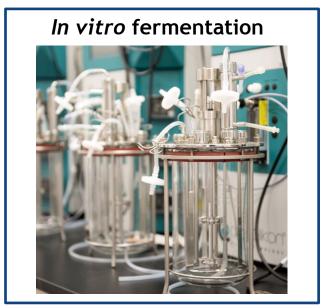
SER-109 analyses	Key issues addressed		
Clinical	 Detailed analyses of clinical data Investigation of <i>C. difficile</i> diagnostics 		
Pharmacodynamics / microbiome analyses	 Investigation of drug activity 		
Chemistry, Manufacturing and Controls (CMC)	 Drug product distribution and handling Phase 1b to Phase 2 manufacturing and formulation changes, and potential impact on drug activity 		

Key Findings: Factors contributing to SER-109 Phase 2 study result

Diagnosis - Misdiagnoses may have occurred both in some patients entering the trial, as well as for recurrences diagnosed during the study

Dose - The dose used in the Phase 2 study may have been suboptimal in certain patients


Further SER-109 clinical development


- FDA discussions regarding a new SER-109 clinical study in progress
- Anticipate completion of FDA dialogue in the near future

SER-262: Synthetic Ecobiotic® drug candidate for primary *C. difficile* infection

- Oral, microbiome therapeutic candidate comprising <u>twelve strains</u> of fermented, rationally selected bacterial spores
- Bacteria species selected based on analysis of SER-109 Phase 1b microbiome data, biological and phylogenetic heterogeneity, and preclinical efficacy in C. difficile infection mouse model
- Data support a mechanism of action in which SER-262 strains compete for *C. difficile* preferred carbon sources

SER-262 Phase 1b to provide insight into efficacy and safety in patients with primary *C. difficile* infection

Arm A: Tx with 10⁴ spores (n=10); placebo (n=2)Arm B: Tx with 10⁵ spores (n=10); placebo (n=2) 60 patients with primary C. difficile Arm C: Tx with 10⁶ spores infection (n=10); placebo (n=2) Arm D: Tx with 10⁷ spores (n=10); placebo (n=2) Arm E: Tx with 108 spores (n=10); placebo (n=2)

Primary Objective

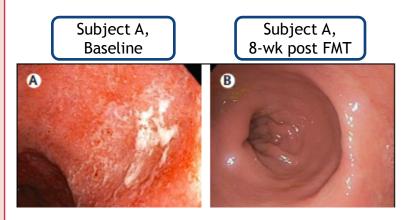
- Safety and tolerability at 24 weeks
- Relative risk of C. difficile recurrence compared to placebo at up to 8 weeks

Secondary Objectives

- Time to *C. difficile* recurrence
- Relative risk of recurrence at up to 4, 12, and 24 weeks after treatment

Inflammatory Bowel Disease

Overview and R&D Programs


Multiple FMT studies provide proof of concept for microbiome therapy in ulcerative colitis

THE LANCET

Multidonor intensive faecal microbiota transplantation for active ulcerative colitis: a randomised placebo-controlled trial

Sudarshan Paramsothy, Michael A Kamm, Nadeem O Kaakoush, Alissa J Walsh, Johan van den Bogaerde, Douglas Samuel, Rupert W L Leong, Susan Connor, Watson Nq, Ramesh Paramsothy, Wei Xuan, Enmoore Lin, Hazel M Mitchell, Thomas J Borody

Steroid-free clinical remission and endoscopic remission or response* Secondary outcomes Steroid-free clinical remission † 18 (44%) 8 (20%) 2-2 (1·1-4·5) 0-021 Steroid-free clinical remission † 18 (44%) 9 (23%) 2-4 (1·3-4·5) 0-004 Steroid-free endoscopic remission † 5 (12%) 3 (8%) 1-6 (0·4-6·4) 0-48 Steroid-free endoscopic response ¶ 13 (32%) 4 (10%) 3-2 (1·1-8·9) 0-016 *Total Mayo score ≤ 2, with all subscores ≤ 1, and ≥ 1 point reduction from baseline in endoscopy subscore. †Combined Mayo subscores of ≤ 1 for rectal bleeding plus stool frequency. ‡Decrease of ≥ 3 points or ≥ 50% reduction from baseline (or both) in combined Mayo subscores ≤ 1, with ≥ 1 point reduction from baseline.		Faecal microbiota transplantation (n=41)	Placebo (n=40)	Risk ratio (95% CI)	p value
endoscopic remission or response* Secondary outcomes Steroid-free clinical remission† 18 (44%) 8 (20%) 2-2 (1·1-4·5) 0-021 Steroid-free clinical response‡ 22 (54%) 9 (23%) 2·4 (1·3-4·5) 0-004 Steroid-free endoscopic remission§ 5 (12%) 3 (8%) 1·6 (0·4-6·4) 0·48 Steroid-free endoscopic response¶ 13 (32%) 4 (10%) 3·2 (1·1-8·9) 0-016 *Total Mayo score ≤ 2, with all subscores ≤ 1, and ≥ 1 point reduction from baseline in endoscopy subscore. †Combined Mayo subscores of ≤ 1 for rectal bleeding plus stool frequency. ‡Decrease of ≥ 3 points or ≥ 50% reduction from baseline (or both) in combined Mayo subscores for rectal bleeding plus stool frequency. \$Mayo endoscopy	Primary outcome				
Steroid-free clinical remission† 18 (44%) 8 (20%) 2-2 (1-1-4-5) 0-021 Steroid-free clinical response‡ 22 (54%) 9 (23%) 2-4 (1-3-4-5) 0-004 Steroid-free endoscopic remission§ 5 (12%) 3 (8%) 1-6 (0-4-6-4) 0-48 Steroid-free endoscopic response¶ 13 (32%) 4 (10%) 3-2 (1-1-8-9) 0-016 *Total Mayo score ≤2, with all subscores ≤1, and ≥1 point reduction from baseline in endoscopy subscore. †Combined Mayo subscores of ≤1 for rectal bleeding plus stool frequency. ‡Decrease of ≥3 points or ≥50% reduction from baseline (or both) in combined Mayo subscores for rectal bleeding plus stool frequency. \$Mayo endoscopy		11 (27%)	3 (8%)	3-6 (1-1-11-9)	0-021
Steroid-free clinical response‡ 22 (54%) 9 (23%) 2-4 (1-3-4-5) 0-004 Steroid-free endoscopic remission§ 5 (12%) 3 (8%) 1-6 (0-4-6-4) 0-48 Steroid-free endoscopic response¶ 13 (32%) 4 (10%) 3-2 (1-1-8-9) 0-016 *Total Mayo score ≤ 2, with all subscores ≤ 1, and ≥ 1 point reduction from baseline in endoscopy subscore. †Combined Mayo subscores of ≤ 1 for rectal bleeding plus stool frequency. ‡Decrease of ≥ 3 points or ≥ 50% reduction from baseline (or both) in combined Mayo subscores for rectal bleeding plus stool frequency. \$Mayo endoscopy	Secondary outcomes				
Steroid-free endoscopic remission 5 5 (12%) 3 (8%) 1-6 (0-4-6-4) 0-48 Steroid-free endoscopic response ¶ 13 (32%) 4 (10%) 3-2 (1-1-8-9) 0-016 *Total Mayo score ≤ 2, with all subscores ≤ 1, and ≥ 1 point reduction from baseline in endoscopy subscore. †Combined Mayo subscores of ≤ 1 for rectal bleeding plus stool frequency. ‡Decrease of ≥ 3 points or ≥ 50% reduction from baseline (or both) in combined Mayo subscores for rectal bleeding plus stool frequency. \$Mayo endoscopy	Steroid-free clinical remission†	18 (44%)	8 (20%)	2-2 (1-1-4-5)	0-021
Steroid-free endoscopic response¶ 13 (32%) 4 (10%) 3·2 (1·1–8·9) 0·016 *Total Mayo score ≤2, with all subscores ≤1, and ≥1 point reduction from baseline in endoscopy subscore. †Combined Mayo subscores of ≤1 for rectal bleeding plus stool frequency. ‡Decrease of ≥3 points or ≥50% reduction from baseline (or both) in combined Mayo subscores for rectal bleeding plus stool frequency. \$Mayo endoscopy	Steroid-free clinical response‡	22 (54%)	9 (23%)	2-4 (1-3-4-5)	0.004
*Total Mayo score ≤2, with all subscores ≤1, and ≥1 point reduction from baseline in endoscopy subscore. †Combined Mayo subscores of ≤1 for rectal bleeding plus stool frequency. ‡Decrease of ≥3 points or ≥50% reduction from baseline (or both) in combined Mayo subscores for rectal bleeding plus stool frequency. \$Mayo endoscopy	Steroid-free endoscopic remission§	5 (12%)	3 (8%)	1.6 (0.4-6.4)	0-48
†Combined Mayo subscores of ≤1 for rectal bleeding plus stool frequency. ‡Decrease of ≥3 points or ≥50% reduction from baseline (or both) in combined Mayo subscores for rectal bleeding plus stool frequency. \$Mayo endoscopy	Steroid-free endoscopic response¶	13 (32%)	4 (10%)	3.2 (1.1-8.9)	0-016

SER-287 Inflammatory Bowel Disease (IBD) opportunity

Significant unmet need for improved therapies for IBD

- Large US population: ~700K ulcerative colitis, ~700K Crohn's
- Only~30% of patients respond to currently approved therapies
- Many therapies are immunosuppressive, limiting widespread use

SER-287 target profile:

- Oral
- Alternative mechanistic approach, potential mono or combo therapy
- Not expected to be immunosuppressive

SER-287 development opportunity:

- Initial development as induction therapy for ulcerative colitis
- Potential development as UC maintenance therapy, Crohn's disease

SER-287 Phase 1b to provide insight into efficacy and mechanism in UC patients

Arm A (n=15): Placebo pretreatment / SER-287 once weekly dosing for 8 weeks

Arm B (n=10): Placebo pretreatment / Placebo once daily placebo for 8 weeks

Arm C (n=15): Vancomycin pre-treatment / SER-287 once daily dosing for 8 weeks

Arm D (n=15): Vancomycin pre-treatment / SER-287 once weekly dosing for 8 weeks

Primary Objective

- Change in composition of intestinal microbiome at 8 weeks
- Safety and tolerability

Secondary Objectives

- Clinical responses, including complete remission, and endoscopic improvement
- Change in serum and fecal biomarkers
- Complement of microbiome metabolic pathways from stool, urine and blood
- Immunological and pathologic changes in mucosal biopsies

21

55 mild-

moderate

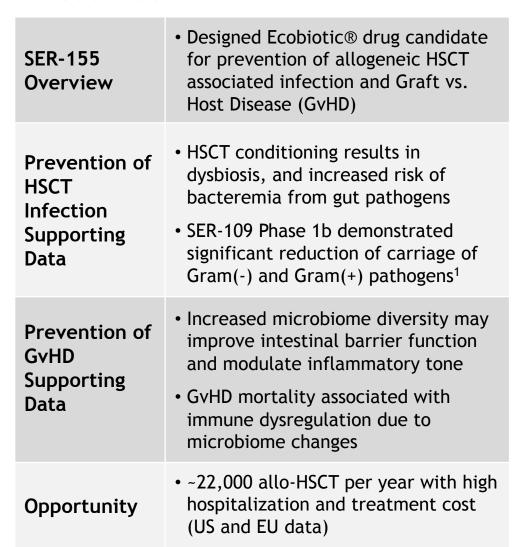
UC patients

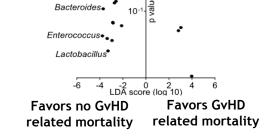
failing

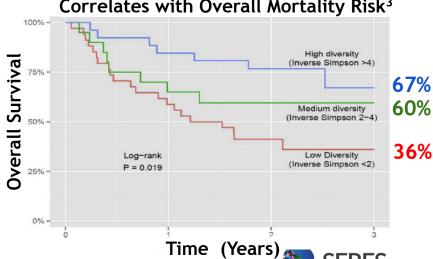
standard-of-

care

SER-301: Synthetic Ecobiotic® therapeutic candidate for inflammatory bowel disease


- Follow-on therapeutic candidate to SER-287 in preclinical development for inflammatory bowel disease
- Oral, microbiome therapeutic candidate comprising fermented, rationally selected bacteria
- Selection of SER-301 bacterial composition to be based on:
 - SER-287 study data (clinical and microbiome analysis)
 - Existing collaborations evaluating analysis of FMT ulcerative colitis clinical study data
 - Preclinical screening for microbial function, immunological assay, and animal models


Additional R&D Opportunities


SER-155: To improve hematopoietic stem cell transplantation outcomes

Microbiome Profile Correlates with GvHD Mortality Risk² Bacterial genera 10-2 Veillonella

HSCT Patient Microbiome Health Correlates with Overall Mortality Risk³

Immuno-oncology microbiome therapeutic opportunity

Therapeutic Objectives

- <u>To improve efficacy</u>: Modulate immune response, improve clinical response to therapeutic checkpoint inhibitors
- <u>To improve safety</u>: Reduce anti-CTLA4 induced colitis by providing microbial ecologies correlated with improved patient outcomes

ASCO-SITC

Clinical Immuno-Oncology Symposium

Association of diversity and composition of the gut microbiome with differential responses to PD-1 based therapy in patients with metastatic melanoma.

Citation

J Clin Oncol 35, 2017 (suppl 7S; abstract 2)

Author(s):

Vancheswaran Gopalakrishnan, Christine Spencer, Alexandre Reuben, Tatiana Karpinets, Diane Hutchinson, Kristi Hoffman, Peter A. Prieto, Michael T. Tetzlaff, Alexander Lazar, Michael A. Davies, Jeffrey E. Gershenwald, Robert R. Jenq, Patrick Hwu, Padmanee Sharma, James Patrick Allison, Andrew Futreal, Nadim Ajami, Joseph Petrosino, Carrie Daniel-MacDougall, Jennifer A. Wargo; UT MD Anderson Cancer Center, Houston, TX; The University of Texas MD Anderson Cancer Center, Houston, TX; Baylor College of Medicine, Houston, TX; Memor Sloan-Kettering Cancer Ctr, New York, NY

nature communications

Intestinal microbiome analyses identify melanoma patients at risk for checkpoint-blockade-induced colitis

Krista Dubin^{1,2,3}, Margaret K. Callahan^{4,5}, Boyu Ren⁶, Raya Khanin⁷, Agnes Viale⁸, Lilan Ling², Daniel No², Asia Gobourne², Eric Littmann², Curtis Huttenhower^{6,9}, Eric G. Pamer^{1,2,10,*} & Jedd D. Wolchok^{4,5,10,11,*}

Science

Anticancer immunotherapy by CTLA-4 blockade relies on the gut microbiota

Marie Vétizou^{1,2,3}, Jonathan M. Pitt^{1,2,3}, Romain Daillère^{1,2,3}, Patricia Lepage⁴, Nadine Waldschmit...

+ See all authors and affiliations

Science 27 Nov 2015: Vol. 350, Issue 6264, pp. 1079-1084 DOI: 10.1126/science.aad1329

Science

Commensal *Bifidobacterium* promotes antitumor immunity and facilitates anti-PD-L1 efficacy

Ayelet Sivan^{1,*}, Leticia Corrales^{1,*}, Nathaniel Hubert², Jason B. Williams¹, Keston Aquino-Michaels³, Zachary...

+ See all authors and affiliations

Science 27 Nov 2015: Vol. 350, Issue 6264, pp. 1084-1089

Collaborations with leading institutes to advance R&D progress

Target Indication	Academic Collaboration		
Inflammatory Bowel Disease	Pennsylvania St. Joseph's Healthcare Hamilton		
Immuno-oncology Therapeutics	Memorial Sloan Kettering Cancer Center		
Hematopoietic Stem Cell Transplantation	Memorial Sloan Kettering Cancer Center		
Primary Sclerosing Cholangitis, NASH and Other Liver Diseases	MAYO CLINIC T		
Obesity and Metabolic Syndrome	MASSACHUSETTS GENERAL HOSPITAL		
Rare genetic metabolic diseases (e.g., urea cycle disorders, hepatic encephalopathy)	Pennsylvania University of Pennsylvania		

Broad IP portfolio and regulatory exclusivity

7 ISSUED US PATENTS + LICENSED IP*

- Demonstrates rationally designed ecologies of spores and microbes are patentable
- Composition of matter and method claims
- Claims related to SER-109/CDI & colitis lead candidates through 2033

SERES PATENT PORTFOLIO

- 16 Families of Applications
 - 9 Nationalized
 - Pending PCT
 - **5** Pending Provisionals

REGULATORY EXCLUSIVITY

years for new biological composition

10 years for new drug

^{*} Includes additional rights to intellectual property including a worldwide exclusive license to Memorial Sloan Kettering Cancer Center patent applications related to the use of bacterial compositions for treating HSCT patients and related areas

Upcoming value-driving milestones

SER-109: Completion of FDA dialogue regarding future development

SER-109: Initiation of further clinical development

SER-287: Ulcerative Colitis - Phase 1b read-out (2017)

SER-262: Primary C. difficile infection - Phase 1b read-out (2017)

Advancing new pipeline programs in infectious diseases, inflammatory and immune diseases (including immuno-oncology), metabolic and liver diseases

Leading the Microbiome Revolution